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Abstract. We present a rewriting algorithm for efficiently testing future
time Linear Temporal Logic (LTL) formulae on finite execution traces.
The standard models of LTL are infinite traces, reflecting the behavior
of reactive and concurrent systems which conceptually may be continu-
ously alive. In most past applications of LTL, theorem provers and model
checkers have been used to formally prove that down-scaled models sat-
isfy such LTL specifications. Our goal is instead to use LTL for up-scaled
testing of real software applications, corresponding to analyzing the con-
formance of finite traces against LTL formulae. We first describe what
it means for a finite trace to satisfy an LTL property and then suggest
an optimized algorithm based on transforming LTL formulae. We use
the Maude rewriting logic, which turns out to be a good notation and
being supported by an efficient rewriting engine for performing these ex-
periments. The work constitutes part of the Java PathExplorer (JPAX)
project, the purpose of which is to develop a flexible tool for monitoring

Java program executions.

1 Introduction

Future time Linear Temporal Logic (future time LTL), introduced by Pnueli
in 1977 [21], is a logic for specifying temporal properties about reactive and
concurrent systems. Future time LTL provides temporal operators that refer to
the future/remaining part of a trace relative to a current point of reference. We
shall use the shorthand LTL when it is clear from the context that we mean
future time LTL. The models of LTL are infinite execution traces, reflecting the
behavior of such systems as ideally always being ready to respond to requests,
operating systems being an example. LTL has typically been used for specifying
properties of concurrent and interactive down-scaled models of real systems, such
that fully formal program proofs could subsequently be carried out, for example
using theorem provers [14] or model checkers [9]. However, such formal proof
techniques are usually not scalable to real sized systems without an extra effort
to abstract the svstem to a model which is then analyzed. Several systems are
currently being developed that apply model checking to software [4] [15] [3] [20]
(6] [24]. including our work work [10] [25]. In this paper we restrict ourselves
to investigate the use of LTL for testing whether single finite execution traces
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conformora LUL formalae, The merge of testing and temporal logic spectficarton
b attempt to achieve the beactits of both approaches. while avoulding some of
e prrtdls froa ad hoe testiend che complexins in fdl-blown theorem proving
and model checking.

A hnportant question is how to etficiently test UTL formunlae of finite Trace
models, and the main decision here is what daa structure one should ke ro
represent the formula such that it can be used to efficiently analvze the rrace
as 1ts traversed. We will present such a data structure. We will present and
implement our logics and algorithms in Mande (t]. a high-performance svstem
supporting both membership equational logic [19] and rewriting logic [18]. The
current version of Maude can do up to 3 million rewritings per second on 300N Hz
processors. and its compiled version is intended to support 13 million rewritings
per second!. The decision to use Maude has made it VEry easy to experiment
with logics and algorithms. Later realizations of the work can be done in a
standard programming language such as Java or C++. In [13] we have for ex-
ample described a data structure used to represent an LTL formula as a minimal
finite state machine, based on a concept called finite transition trees. This struc-
ture can then be represented and interpreted within Java. In [22] we further-
more describe a dynamic programming algorithm for checking LTL formulae on
execution traces. OQur colleague Dimitra Giannakopoulou has furthermore im-
plemented a Biichi automata inspired algorithm adapted to finite trace LTL.
However, so far the speed of Maude is very promising, suggesting that Maude
can be used not only for prototyping but also for practical monitoring.

The work constitutes part of the Java PathExplorer (JPAX) tool [12,13] for
monitoring Java program executions. JPAX facilitates automated instrumenta-
tion of Java byte code, which then emits events to an observer during execution.
The observer can be running a Maude process as a special case, hence Maude’s
rewriting engine can be used to drive a temporal logic operational semantics
with program execution events. JPAX can be regarded as consisting of three
main modules: an instrumentation module, an observer module, and an inter-
connection module that ties them together through the observed event stream,
see Figure 1. The instrumentation module performs a script-driven automated
instrumentation of the program to be observed, using the bytecode engineering
tool Jtrek [2]. The instrumented program, when run, will emit relevant events to
the interaction module, which further transmits them to the observation mod-
ule. The observer may run on a different computer, in which case the events are
transmitted over a socket. When the observer receives the events it dispatches
these to a set of observer rules, each rule performing a particular analysis that
has been requested in the verification script. Observer rules are written in Java,
but can call programs written in other languages, such as in this case Maude. In
addition to checking such high level requirements, rules can also be programmed
to perform low level error pattern analysis of, for example, multi-threaded pro-
grams, identifying error-prone programming practices, such as unhealthy locking
disciplines that may lead to data races and/or deadlocks. The specification script
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delines what cognirement specification should be nsed as basis for the monitoringe,
amd consists ol o vertfication seript and an nstommentanon seript. The verif-
racion seript adentifies the high fevel requirement specifications that events are
ro be checked against. The propositions refereed to in chese specifications are
abstract boolean Hags, and do hence nox cefer divectls to entities in the con-
crete progriun. The instrunientation seript establishes this connection between
the concrete boolean program predicates and the abstract propositions.
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Fig. 1. Overview of JPaX

The idea of using temporal logic in program testing is not new, and at our
knowledge, has already been pursued in the commercial Temporal Rover tool
(TR) [5], and in the MaC tool [17]. Both tools have greatly inspired our work.
Our basic contribution in this paper is to show how a rewriting system, such
as Maude, makes it possible to experiment with monitoring logics very fast and
elegantly, and furthermore can be used as a practical program monitoring en-
gine. This approach makes it possible to formalize ideas in a framework close to
standard mathematics. The formula transforming approach suggested is a new
and efficient way of testing LTL formulae. A previous version of the paper, pub-
lished as a technical report [11], presents a simplified action based formalization
of LTL rather than the state based more realistic framework presented here,
which is the one currently implemented in JPAX. In [12] and [13] we describe a
formalization of past time LTL (as well as future time LTL), again illustrating
the succinctness of new logic definitions.

Section 2 contains preliminaries, including an introduction to Maude, propo-
sitional logic and the standard definition of propositional LTL with its infinite
trace models. Section 3 presents a finite trace semantics for LTL and then its
implementation in Maude. Although abstract and elegant, this implementation
is not efficient, and Section 4 presents an efficient implementation using a for-




muda rranstforination approach. Fiadlv, Section 5 contains conclusions aned o

description of futarre work,

2 Preliminaries

Thiy section briefly introdnces Mande. a rewriting-based specification and ver-
theation system, then a relatively standard procedure ro reduce propositional
formulae. and then reminds the propositional LTL wich its infinite rrace models.

2.1 Maude and Logics for Program Monitoring

Maude [1] is a freely distributed high-performance system in the OBJ (8] alge-
braic specification family. supporting both rewriting logic [13] and membership
equational logic [19]. Because of its efficient rewriting engine, able to execute
3 million rewriting steps per second on currently standard hardware configu-
rations, and because of its metalanguage features, Maude turns out to be an
excellent tool to create executable environments for various logics, models of
computation, theorem provers, and even programming languages. We were de-
lighted to notice how easily we could implement and efficiently validate our
algorithms for testing LTL formulae on finite event traces in Maude, admittedly
a tedious task in C++ or Java, and hence decided to use Maude at least for the
prototyping stage of our runtime check algorithms.

We very briefly and informally remind some of Maude's features, referring
the interested reader to the manual (1] for more details. Maude supports mod-
ularization in the OBJ style. There are various kinds of modules, but we are
using only functional modules which follow the pattern “fmod <name> is <body>
endfm”. The body of a functional module consists of a collection of declarations,
of which we are using importing, sorts, subsorts, operations, variables and equa-
tions, usually in this order.

We next introduce some modules that we think are general enough to be used
within any logical environment for program monitoring that one would want to
implement by rewriting. The next one simply defines atomic propositions as an
abstract data type having one sort, Atom and no operations or constraints:

fmod ATOM is sort Atom . endfnm

The actual names of atomic propositions will be automatically generated in an-
other module that extends ATOM, as constants of sort Atom. These will be generated
by the observer at the initialization of monitoring, from the actual properties
that one wants to monitor.

An important aspect of program monitoring is that of an {abstract) execution
trace, which consists of a finite list of events. We abstract events by lists of atoms,
those that hold after the action that generated the event took place. The values
of the atomic propositions are updated by the observer according to the actual
state of the executing program and then sent to Maude as a term of sort Event:




tmod TRACE (s protecting ATOM
sorns Evant £vante Trace
aubsorts Atom < Evant < ESvante Trace

ap ail -» Evant

ap . Atom Event -> Event [prac 23]

op .* Evant -> Evente

op ... Evant Trace -> Trace [prac 25]
endfm

The statement. protecting ATOM imports the module ATOM. The above is a com-
pact way to use muz-fir and order-sorted notation to define an abstract data
rype of traces: a trace is a comma separated list of events. where an event is just
a list of atoms. Operations can have attributes, such as the precedences above,
which are written between square brackets. The attribute prec gives a prece-
dence to an operator?, thus eliminating the need for most parentheses. Notice
the special sort Events which stay for terminal events, i.e., events that occur at
the end of traces. Any event can potentially occur at the end of a trace. It is
often the case that ending events are treated differently, like in the case of finite
trace linear temporal logic; for this reason, we have introduced the operation _=*
which marks an event as terminal.

Syntax and semantics are basic requirements to any logic, in particular to
those logics needed for monitoring. The following module introduces what we
believe are the basic ingredients of monitoring logics. We found the following
very useful for our logics, but of course, the user is free to change it if he/she

finds it inconvenient:

fmod LOGICS-BASIC is protecting TRACE .
sort Formula . subsort Atom < Formula .
ops true false : -> Formula
op [.] : Formula -> Bool ([strat (1 Q)] .
eq [true] = true . eq [false] = false .

vars A A’ : Atom . var E : Event . var E# : Event» . var T : Trace .
op .{_} : Formula Events -> Formula (prec 10]
eq true{Es} = true . eq false{E¢} = false .
eq A{nil} = false .
eq A{A'} = if A == A’ then true else false fi .
eq A{A’ E} = if A == A’ then true else A{E} fi .
eq A{E =} = A{E} .
op _l=_ : Trace Formula -> Bool [prec 30]
eq T i= true = true .
eq T = false = false .
eq E {= A = [A{E}]
eq E,T |= A = E |= &
endfm

The first block of declarations introduces the sort Formula which can be thought
of as a generic sort for any well-formed formula in any logic. There are two
designated formulae, namely true and false, with the obvious meaning, together
with a “projection”, denoted [_], of any formula into a boolean expression. The
only role of this operation is to check whether a logical formula is violated or not,
each logic being allowed to refine this operator according to its policy; the sort

? Underscores are places for arguments.
* The lower the precedence number, the tighter the binding.




BooL 15 bhiulnin to Maude and has two constants true and false which are ditferent
from those of sort Formula, amd a generic operator Lf_then_else_f1. [ts atrribute
siys that this operations shonld alwiays be evalnatod cagerly: numbers o the
strategy declaracion stay for argument positions that are numbered from left to
righe, U staying for the operator itself. The definition of [_] can be extended
within other burther logics if needed, like in the case of proposition calculus (see
next subsection). The second block defines the operation _{_} which takes a
formula and an event and yields another formula. The intuition for this nperation
ts that it “evaluates” the formula in the new state and produces a proof obligation
as another formula for the subsequent events, if needed. [f the returned formula is
true or false then it means that the formula was satisfied or violated, regardless
of the rest of the execution trace; in this case, a message can be returned by the
observer. As we’'ll soon see, each logic will further complete the definition of this
operator. Finally, the satisfaction relation is defined together with a few obvious

properties.

2.2 Propositional Calculus

A rewriting decision procedure for propositional calculus due to Hsiang [16] is
adapted and presented. It provides the usual connectives _/\_ (and), _++_ (ex-
clusive or), _\/_ (or), !_ (negation), _->_ (implication), and -<~>_(equivalence).
The procedure reduces tautology formulae to the constant true and all the oth-
ers to some canonical form modulo associativity and commutativity. An unusual
aspect of this procedure is that the canonical forms consist of exclusive or of
conjunctions. Even if propositional calculus is very basic to almost any logical
environment, we decided to keep it as a separate logic instead of being part of
the logic infrastructure of JPAX. One reason for this decision is that its seman-
tics could be in conflict with other logics, for example ones in which conjunctive
normal forms are desired.

An OBJ3 code for this procedure appeared in [8]. Below we give its obvi-
ous translation to Maude together with its finite trace semantics, noticing that
Hsiang [16] showed that this rewriting system modulo associativity and commu-
tativity is Church-Rosser and terminates. The Maude team was probably also
inspired by this procedure, since the builtin B00L module is very similar.

fmod PROP-CALC is ertending LOGICS-BASIC
*s» Constructors sse
op ./\_ : Formula Formula -> Formula [assoc comm prec 15] .
op _++_ : Formula Formula -> Formula [assoc comm prec 17)
vars X Y Z : Formula .
eq true /\ X = X .
eq false /\ X = false .
oqX/\X=X.
eq false ++ X = X .
aq X ++ X = false .
eq X /N (Y ++ 2} = X AN Y+ XN Z .
#e« Derived operators sss

op _\/_ : Formula Formula -> Formula [assoc prec 19] .
op !_ : Formula -> Formula [prec 13] .

°p .->_ : Formula Formula -> Formula (prec 21}

op _<->_ . Formula Formula -> Formula (prec 23]

eq X \/ Y = X /\ Y #+ X +s ¥ |




wq ' L 2 nrue s+ X
LN SERAC AL A ST RN SRR SV AN
wq La-v 0 2 nrue v X re

«ss Finite n“rice samantics
var T . Tracs . var Ee : Evants
aq T 12 X/ 0 = T s X and I = 7
aq T |= X +« f =T [= X xor T {5 ¢
ag (X /N () {Ee} = X{Ee} /) Y(Ee}
aq ‘X ¢+ Y}{E«} 2 X{E«} +» {(Ee}
aq (X /N Y] = [X] and [Y] .
eq (X +» (] = [X] ror [Y] .

endfm

Operators are again declared in mix-fix notation and have attributes berween
squared brackets, such as assoc, comm and prec <aumber>. Once the module above
is loaded! in Maude, reductions can be done as follows:

red a => b /N = <=> (a -> b) /\ (a -> ¢) see> trye
red a <-> ! b ase> 3 ++ X

Notice that one should first declare the constants a, b and <. The last six equa-
tions are related to the semantics of propositional calculus. Since [_]_ is eagerly
evaluated, (X] will first evaluate X using propositional calculus reasoning and
then will apply one of the last two equations if needed; these equations will not
be applied normally in practical reductions, they are useful only in the correct-

ness proof in Theorem 1.

2.3 Linear Temporal Logic

Classical LTL provides in addition to the propositional logic operators the tem-
poral operators {]1_ (always), <>_ (eventually), _U_ (until), and o_ (next). An
LTL standard model is a function ¢ : Nt — 2% for some set of atomic proposi-
tions P, i.e., an infinite trace over the alphabet 27, which maps each time point
(a natural number) into the set of propositions that hold at that point. The
operators have the following interpretation on such an infinite trace. Assume
formulae X and Y. The formula {IX holds if X holds in all time points, while <>X
holds if X holds in some future time point. The formula X U ¥ (X until ¥) holds if
Y holds in some future time point, and until then X holds (so we consider strict
until). Finally, o X holds for a trace if X holds in the suffix trace starting in the
next (the second) time point. The propositional operators have their obvious
meaning. As an example illustrating the semantics, the formula [1(X -> <>Y) is
true if for any time point ((1) it holds that if X is true then eventually (<>) Y is
true. Another similar property is (J(X -> o(Y U 2)), which states that whenever
X holds then from the next state Y holds until eventually z holds. It’s standard
to define a core LTL using only atomic propositions, the propositional operators
'_ (not) and _/\_ {and), and the temporal operators o_ and _U_, and then define
all other propositional and temporal operators as derived constructs. Standard
equations are <>X = true U X and [JX = !<>1X.

! Either by typing it or using the command in <filename>.




3 Finite Trace Linear Temporal Logic

s alveady explained, oue goal s ro develop o framework for testing software
svstems astng remporal logic, Tests are povtormed on fnite oxectition traces and
we therefore need to formalize whar it means for a fnite trace to satisfy an LTL

ormula. We tiest present asemantics of Bnite trace LTL using standard math-
cmatical notation. Then we present a specification in Mande of a finite trace
semantics. Whereas the former semantics uses universal and existential quantifi-
cation. the second Maude specification is defined using recursive definitions that
have a straightforward operational rewriting interpretation and which therefore

can be executed.

3.1 Finite Trace Semantics

As mentioned in Subsection 2.1, a trace is viewed as a sequence of program
states, each state denoting the set of propositions that hold at that state. We
shall outline the finite trace LTL semantics using standard mathematical nota-
tion rather than Maude notation. Assume two total functions on traces, head :
Trace — Event returning the head event of a trace and length returning the
length of a finite trace, and a partial function tail : Trace — Trace for taking the
tail of a trace. That is, head(e, t) = head(e) = e, tail(e,t) = ¢, and length(e) = 1
and length(e,t) = 1 + length(t). Assume further for any trace ¢, that ¢; denotes
the suffix trace that starts at position i, with positions starting at 1. The satis-
faction relation |= C Trace x Formula defines when a trace ¢ satisfies a formula
f, written ¢ = f, and is defined inductively over the structure of the formulae
as follows, where A is any atomic proposition and X and Y are any formulae:

tE A iff A € head(t)

t = true iff true,

k= false iff false,

INYift=Xandt =1,

I+ Yift=XxortEy,

0x iff (Vi< length(t))t; =X

<X iff (31< length(t)) ti =1

XUY iff (3i< length(t)) (ti =Tand (Y <i)t; =1X)

t
t
t
t
L
t
t o X iff (if tail(t) is defined then tail(t) = X else ¢ = X)

MWWwIwwwr

Notice that finite trace LTL can behave quite differently from standard in-
finite trace LTL. For example, there are formulae which don't hold in infinite
trace LTL but hold in finite trace LTL, such as <>([] A \/ (] ! A), and there
are formulae which hold in infinite trace LTL and do not hold in fnite trace LTL,
such as the negation of the above. The formula above is satisfied by any finite
trace because the last event/state in the trace either contains A or it doesn't.

3.2 Finite Trace Semantics in Maude

Now it can be relatively easily seen that the following Maude specification cor-
rectly “implements” the finite trace semantics of LTL described above. The
only important deviation from the rigorous mathematical formulation described
above is that the quantifiers over finite sets of indexes are expressed recursively.




tmod LTL s axtwnding PROP-UALC
see gyntax

op (). Foemula -> Formula (prac til
op <»_ . Focrmula -> Formula [prec 11]
op U, Formula Formula -> Formula (prac (4]
op o_ . Formula -> Farmula [prcc L}
*es semantics
sars X f Formula . var E : Evant var T Trace
agq € l= (] x =8 jax
eq EST 1= (J X = ET!»Xand T = (] X .
aq E l= <> X = E |= X .
eq ET = <> X =T !l=XorT!ls <X .
eq f= X 37 sE =Y.
eq E,T i= X JY aET I=YorET (=X and T laXxUyY .
aq E =0 X = E |= X .
eq £, T /= o5 X =T |=X .
endfm

Notice that only the temporal operators needed needed declarations and seman-
tics. the others being already defined in PROP-CALC and LOGICS-BASIC. and that
the definitions that involved the functions head and tail were replaced by two al-
ternative equations. One can now directly verify LTL properties on finite traces
using Maude’s rewriting engine, by commands such as

red a b, a, ¢ a,

a ab,a, ca, ad cdia(] (a-><>0b) .
red a b, a, ¢ a, a a, abd

b, ¢ b,
b, ¢ b, ved = (F [Ja > o b)) .

which should return the expected answers, i.e., true and false, respectively. The
algorithm above does nothing but blindly follows the mathematical definition of
satisfaction and even runs reasonably fast for relatively small traces. For exam-
ple, it takes® about 30ms (74k rewrite steps) to reduce the first formula above
and less than 1s (254k rewrite steps) to reduce the second on traces of 100 events
(10 times larger than the above). Unfortunately, this algorithm doesn’t seem to
be tractable for large event traces, even if run on very performant platforms.
As a concrete practical example, it took Maude 7.3 million rewriting steps (3
seconds) to reduce the first formula above and 2.4 billion steps (1000 seconds)
for the second on traces of 1,000 events; it couldn’t finish in one night (more
than 10 hours) the reduction of the second formula on a trace of 10,000 events.
Since the event traces generated by an executing program can easily be larger
than 10,000 events. the trivial algorithm above can not be used in practice.

A rigorous complexity analysis of the algorithm above is hard (because it has
to take into consideration the evaluation strategy used by Maude for terms of sort
Bool) and not worth the effort. However, a simplified analysis can be easily made
if one only counts the maximum number of atoms of the form event |= atom
that can occur during the rewriting of a satisfaction term, as if all the boolean
reductions were applied after all the other reductions: let us consider a formula X
= (1 (0 ... (0 & ...)) where the always operator is nested m times, and a
trace T of size n, and let 7°(n, m) be the total number of basic satisfactions event

= atom that occur in the normal form of the term T 1= X if no boolean reductions
were applied. Then, the recurrence formula T(n.m) = T(n~1,m)+ T(n,m — 1)
follows immediately from the specification above. Since () = (P + (),

5 On a 1.7GHz, 1Gb memory PC.
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4 An Efficient Rewriting Algorithm

[n this section we shall present a more efficient rewriting semantics for LTL.
based on the idei of consuming the events in the rrace. one by one. and updating
adata structure (which is also a formula) corresponding ro the effect of the event
on the value of the formula. Our decision to write an operational semantics this
way was motivated by an attempt to program such an algorithm in Java, where
such a solution would be the most natural. As it turns out. it also vields a more
efficient rewriting system.

4.1 The Main Algorithm

We implement this algorithm by extending the definition of the operation

-{.} : Formula Events -> Formula to temporal operators, with the following in-
tuition. Assuming a trace E,T consisting of an event E followed by a trace T, then
a formula X holds on this trace if and only if X{E} holds on the remaining trace T.
If che event E is terminal then X{E *} holds if and only if X holds under standard

-

LTL semantics on the infinite trace containing only the event .

fmod LTL-REVISED is protecting LTL .
vars X Y : Formula™. var E : Event . var T : Trace .
eq ([J X){E} = {1 X /\ X{E} .
eg ([J X){E s} = X{E =} .
aq (<> X){E} = <> X \/ X{E}
eq (<> X){E *} = X{(E «} .
eq (o X){E} = X .
eq (o0 X){E *} 2 X{E «} .
eq (X U Y{E} = Y(E} \/ X{E} AN XU Y .
eq (X U Y){E »} = Y{E «} .

op _f-_ : Trace Formula -> Bool [strat (2 0)] .
eq E |- X = [X{E =}] .
eq £E,T i- X = T |- x{E}

endfm

The rule for the temporal operator [1X should be read as follows: the formula x
must hold now (X{E}) and also in the future ({1X). The sub-expression X{E} repre-
sents the formula that must hold for the rest of the trace for X to hold now. As an
example, consider the formula (1<>A. This formula modified by an event B ¢ (so

A doesn’t hold) yields the rewritings sequence ([J<>A){B C} — [I<>4 /\ (<>A){B
C} = [0<A /N (A N/ A{B C}) = [I<>A /\ (<A \/ false) — [J<>A /\ <>A, while
the same formula transformed by & ¢ (so A holds) yields ([1<>A){& C} — [J<>A
N OR{A CE =5 JOA /N (A \/ A{A C}) = [1<A /\ (<A \/ true) — [J<A
/\ true -+ [1<>4, ie., the same formula. Note that these rules spell out the se-
mantics of each temporal operator. An alternative solution would be to define
some operators in terms of others, as is typically the case in the standard se-
mantics for LTL. For example, we could introduce an equation of the form: <>x




rrue O and then oliminnte the rewriting cule for <>X m the above module,

This turns onr 1o be less otficient beciuse mors cowrites are needed.

This wodide eventually defines @ new satisfaction celation e
traces and formulae. The term T - X s evaluated now by an iterative traver-
sal over the trace, where each event transforms the formuli Note that the new
formula that is generated in each step is always kept small by being reduced to
normal form via the equations in the PROP-CALC module in Subsection 2.2, [n fact.
the new formuia consists of boolean combinations of subformulae of the initial
formula. kept in a minimal canonical form. Therefore. the algorithm is linear
in the size of the trace, and worst-case exponential in the size of the formula.
However, it seems that this exponential complexity in the size of the formula is
more of theoretical importance than practical, since in general the size of the
formula grew only twice or less in our experiments. If speed is crucial and the
above procedure turns out to be still too slow, then one can statically generate
all formulae in which a formula can transform and store them as the states of
an automaton, the edges being the possible events. Then when a new event is
generated by the monitored program, one could directly go to the “next” state
of the automaton without any logical reasoning. We have implemented an im-
proved version of such a procedure (in which only a minimal subset of atomic
propositions are evaluated); details regarding this implementation will appear
elsewhere, but an informal description can be found in [13].

Verification results are very encouraging and show that this optimized seman-
tics is orders of magnitudes faster than the first semantics. Traces of less than
10,000 events are verified in milliseconds, while traces of 100.000 events never
needed more than 3 seconds. This technique scales quite well; we were able to
monitor even traces of hundreds of millions events. As a concrete example, we
created an artificial trace by repeating 10 million times the 10 event trace a b,
a, ca, ab, cb, ab, a, ca, ab, ¢ b, and then checked it against the for-
mula [J(a -> <> b). There were needed 4.9 billion rewriting steps for a total of

about 1,500 seconds.

between

4.2 Correctness and Completeness

In this subsection we prove that the algorithm presented above is correct and
complete with respect to the semantics of finite trace LTL presented in Section
3. The proof is done completely in Maude, but since Maude is not intended
to be a theorem prover, we actually have to generate the proof obligations by
hand. However, the proof obligations below could be automatically generated by
a proof assistant like KuMO [7] or a theorem prover like PVS [23]6.

Theorem 1. For any trace T and any formula X, T I= X if and only if T |- x.

Proof. By induction, both on traces and formulae. We first need to prove two
lemmas, namely that the following two equations hold in the context of both LTL

and LTL-REVISED:

° We've already done it in PVS, but we prefer to use onlv Maude in this paper.
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We prove them by structural induction ou the formula X, Constants e and z are
needed w order to prove the first lemma via the theorem of constants. However,
since we prove the second lemma by stractural induction on X, we aot only have
ro add two constants e and ¢ for the universally quantified variables £ and T. but
also two other constants y and z standing for formulas which can be combined via
operators to give other formulas. The induction hypothesis for the second lemma
is added to the following specification as equations. Notice that we merged the
two proofs to save space. A proof assistant like KUMO or PVS would prove them
independently, generating only the needed constants for each of them.

fmod PROOF-OF-LEMMAS is
eaxtending LTL .
extending LTL-REVISED .
op & : -> Event . op t : => Trace .
ops a b c : ~> Atom . ops §y z : -> Formula .
eq e |= y = g |~y .
eq e |= z = o |-z .
eq e,t |=y = t {= y{e} .
oq o, t =2z =t |= z{a} .
eq b{e} = true .
aq c{e} = false .
endfn

It is worth reminding the reader at this stage that the functional modules in
Maude have initial semantics, so proofs by induction are valid. Before proceeding
further, the reader should be aware of the operational semantics of the operation
-==_, namely that the two argument terms are first reduced to their normal forms
which are then compared syntactically (but modulo associativity and commuta-
tivity); it returns true if and only if the two normal forms are equal. Therefore,
the answer true means that the two terms are indeed semantically equal, while
false only means that they couldn’t be proved equal; they can still be equal.
red (¢ |= a == 5 [~ a) and (e [= true == & |- true)

and (e |= false == ¢ |~ false) and (e |= y/Nza=el-y/\ 2
I=y++z)and (e I= [Jy ==e - []y)

and (e (= y ++ z ax ¢

and (o Iz <>y =36 {-<y) and{el=yUz == e [~y U 2)

and (e I= o y xx g |- o y)

and (e,t {= true ==t [= true{e}) and (e,t |= false ==t [= false{s})
and (e,t |= > *= t |= b{e}) and (e,t = ¢ == t |x c{e})

and (a,t I=y /\ z ==t |= (3 /\ 2){e}) and (e,t I=y ++ z == ¢t |= (y ++ z){e})
and (e,t (= [J 7y ==t |= ([] y){e}) and (e,t |= <> y ==t |2 (<> y){s})
and (e.t |=y Uz ==t |= (y U z){e}) and (s,t (=0 y ==t |= (o y){e}) .

It took Maude 129 reductions to prove these lemmas. Therefore, one can safely
add now these lemmas as follows:

fmod LEMMAS is
protecting LTL .
protecting LTL-REVISED .
var £ : Event var T : Trace . var X : Formula .
eq E {= X = E |- X .
eq E,T i= X = T |= X{(E} .
endfa

We can now prove the theorem, by induction on traces. More precisely, we show:




PIE;. and

PiTyimplies PETY. for adl vvents E aned traces T,
where Prriis wae prediente “for all formalis £ 1= R U4F T 1- ¢ This induetion
schema can be casily formalized in Mande as follows:

fmod PROUF-OF-THEOREM (s protecting LENMAS .
op 4 => Zvent . op t : -> Trace . op x
var X Formula
aq t f= X = ¢ |- X |

-> Formula

sndfm
red = |2 1 == ¢ f- x .
red a,% |= x == o,¢ |- 1 .

Notice the difference in role between the constant x and the variable x. The frst
reduction proves the base case of the induction. using the theorem of constants
for the universally quantified variable X. In order to prove the induction step,
we first applied the theorem of constants for the universally quantified variables
E and T. then added P(t) to the hypothesis (the equation “eq t |= X = ¢t [-
X .7), and then reduced Ple t) using again the theorem of constants for the
universally quantified variable X. Like in the proofs of the lemmas, we merged

the two proofs to save space.

5 Conclusions and Future Work

We have presented a finite trace semantics of LTL in the Maude logic together
with a much more efficient version based on formula transforming state changes.
The formula transformation approach can be regarded as a self contained result
with interest to at least the rewriting and temporal logics communities. However,
what perhaps makes it more interesting is that its integration into the general
program monitoring framework JPAX seems to be quite efficient for practical
purposes, allowing an elegant flexibility in the choice and design of requirement
languages. This can be useful not only for research projects and educational
purposes, but also for real-life projects, where requirement languages may be
domain or application specific. In principle what Maude provides is a static
parsing environment for defining syntax, combined with a rewrite-based dynamic
execution environment for defining efficient semantics over the parse trees.

A current research activity is, however, to find yet more efficient representa-
tions of future time LTL formula for the purpose of achieving an absolute optimal
algorithm for testing their satisfaction on execution traces. This becomes espe-
cially crucial for an implementation in a standard programming language such as
Java. In [13] we describe such a provably minimal finite state machine represen-
tation. An efficient dynamic programming algorithm is furthermore described in
(22], although it examines the trace backwards, requiring the trace to be stored.
As it turns out, this algorithm applies more naturally to the checking of past
time LTL. since this can be done by a forward examination of the trace. Of fu-
ture work can be mentioned that we will experiment with new logics in Maude,
such as interval and real time logics and UML notations. We have already in [12,




L3 desenthed how past time LEL can be succinetdy detined in Mode (note that
this work s ditfecen frome the dvniunie prograunming adgoricthm for pist tane
LTL st mentioned ),

Asdescribed in {12, 13] JPAX provides in addition ro specification based mon-
toring also a capability of checking ecror patterns in multi-rhreaded programs.
Future work will try to develop new algorithms for detecting other kinds of con-
currency errors than data races and deadlocks. This includes studying completely
new functionalities of the system. such as guided execution via code instrimen-
ration to explore more of the possible interleavings of a non-deterministic con-
current program during testing. Last, but not least. program monitoring can not
only be applied during program testing, but, perhaps more interestingly. during
operation. and be used to influence the program behavior in case requirements
get violated. Our future research will focus on this aspect.
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